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Abstract 10 

Groundwater recharge is one of the important factors determining the groundwater 11 
development potential of an area. Even though recharge plays a key role in controlling 12 
groundwater system dynamics, much uncertainty remains regarding the relationships between 13 
groundwater recharge and its governing factors at a large scale. The aims of this study were to 14 
identify the most influential factors on groundwater recharge, and to develop an empirical 15 
model to estimate diffuse rainfall recharge at a global-scale. Recharge estimates reported in the 16 
literature from various parts of the world (715 sites) were compiled and used in model building 17 
and testing exercises. Unlike conventional recharge estimates from water balance, this study 18 
used a multimodel inference approach and information theory to explain the relation between 19 
groundwater recharge and influential factors, and to predict groundwater recharge at 0.50 20 
resolution. The results show that meteorological factors (precipitation and potential 21 
evapotranspiration) and vegetation factors (land use and land cover) had the most predictive 22 
power for recharge. According to the model, long term global average annual recharge (1981-23 
2014) was 134 mm/yr with a prediction error ranging from -8 mm/yr to 10 mm/yr for 97.2% 24 
of cases. The recharge estimates presented in this study are unique and more reliable than the 25 
existing global groundwater recharge estimates because of the extensive validation carried out 26 
using both independent local estimates collated from the literature and national statistics from 27 
Food and Agriculture Organisation (FAO). In a water scarce future driven by increased 28 
anthropogenic development, the results from this study will aid in making informed decision 29 
about groundwater potential at a large scale.  30 
 31 
Keywords: Global groundwater recharge, multimodel inference approach, meta study  32 

1 Introduction 33 

Human intervention has dramatically transformed the planet’s surface by altering land use and 34 
land cover and consequently the hydrology associated with it. In the last 100 years the world 35 
population has quadrupled, from 1.7 billion (in 1900) to more than 7.3 billion (in 2014), and is 36 
expected to continue to grow significantly in the future (Gerland et al., 2014). During the last 37 
century, rapid population growth and the associated shift to a greater proportion of irrigated 38 
food production, led to an increase in water extraction by a factor of ~6. This eventually 39 
resulted in the over exploitation of both surface and groundwater resources, including the 40 
depletion of 21 of the world’s 37 major aquifers (Richey et al., 2015). This depletion threatened 41 
human lives in many ways, ranging from critical reductions in water availability to natural 42 
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disasters such as land subsidence (Chaussard et al., 2014;Ortiz‐Zamora and Ortega‐43 
Guerrero, 2010;Phien-Wej et al., 2006;Sreng et al., 2009). Therefore, there is a need to closely 44 
examine approaches for sustainably managing this resource by carefully controlling 45 
withdrawal from the system.  46 
 47 
Groundwater recharge is one of the most important limiting factors for groundwater withdrawal 48 
and determines the groundwater development potential of an area (Döll and Flörke, 2005) 49 
Groundwater recharge connects atmospheric, surface and subsurface components of the water 50 
balance and is sensitive to both climatic and anthropogenic factors (Gurdak, 2008;Herrera‐51 
Pantoja and Hiscock, 2008;Holman et al., 2009;Jyrkama and Sykes, 2007). Various studies 52 
have employed different methods to estimate groundwater recharge including tracer methods, 53 
water table fluctuation methods, lysimeter methods, and simple water balance techniques. 54 
Some of these studies input recharge to numerical groundwater models or dynamically link it 55 
to hydrological models to estimate variations under different climate and land cover conditions 56 
(Aguilera and Murillo, 2009;Ali et al., 2012;Herrera‐Pantoja and Hiscock, 2008;Sanford, 57 
2002).  58 
 59 
In the last few decades, interest in global-scale recharge analysis has increased for various 60 
scientific and political reasons (Tögl, 2010). Lʹvovich (1979) made the first attempt at a global-61 
scale by creating a global recharge map using baseflow derived from river discharge 62 
hydrographs. The next large scale groundwater recharge estimate was done by Döll (2002) who 63 
modelled global groundwater recharge at a spatial resolution of 0.50 using the WaterGAP 64 
Global Hydrological model (WGHM) (Alcamo et al., 2003;Döll, 2002). In this study, the 65 
runoff was divided into fast surface runoff, slow subsurface runoff and recharge using a 66 
heuristic approach. This approach considered relief, soil texture, hydrogeology and occurrence 67 
of permafrost and glaciers for the runoff partitioning. However, WGHM failed to reliably 68 
estimate recharge in semi-arid regions (Döll, 2002). Importantly, in that study, there was no 69 
consideration of the influence of vegetation which has been reported to be the second most 70 
important determinant of recharge by many researchers (Jackson et al., 2001;Kim and Jackson, 71 
2012;Scanlon et al., 2005). In subsequent years, several researchers have attempted to model 72 
global groundwater recharge using different global hydrological models and global-scale land 73 
surface models (Koirala et al., 2012;Scanlon et al., 2006;Wada et al., 2010).  74 
 75 
Although a fair amount of research has been carried out to model groundwater recharge at a 76 
global-scale, most studies compared results to country level groundwater information from the 77 
FAO (FAO, 2005). The inconsistent and approximate nature of FAO estimates raises questions 78 
about the reliability of its use as a standard comparison measure. No study has validated 79 
modelled estimates against small scale recharge measurements. In addition, research has been 80 
mostly restricted to studying meteorological influences on recharge, few studies have 81 
systematically explored global-scale factors governing recharge. Much uncertainty still exists 82 
about the relationship between groundwater recharge and topographical, lithological and 83 
vegetation factors. Without adequate knowledge of these controlling factors, our capacity to 84 
sustainably manage groundwater globally will be seriously compromised.  85 
 86 
The major objectives of this study are to identify the most influential factors on groundwater 87 
recharge and to develop an empirical model to estimate diffuse rainfall recharge. Specifically, 88 
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to quantify regional effects of meteorological, topographical, lithological and vegetation 89 
factors on groundwater recharge using data from 715 globally distributed sites. These 90 
relationships are used to build an empirical groundwater recharge model and then the global 91 
groundwater recharge is modelled at a spatial resolution of 0.50 x 0.50 for the time period 1981 92 
– 2014.  93 

2 Methods 94 

2.1 Dataset 95 

This study is based on a compilation of recharge estimates reported in the literature from 96 
various parts of the world. This dataset is an expansion of previously collated sets of recharge 97 
studies along with the addition of new recharge estimates (Döll and Flörke, 2005;Edmunds et 98 
al., 1991;Scanlon et al., 2006;Tögl, 2010;Wang et al., 2010). The literature search was carried 99 
out using Google scholar, Scopus and Web of science with related keywords ‘groundwater 100 
recharge’, ‘deep percolation’, ‘diffuse recharge’ and ‘vertical groundwater flux’. Several 101 
criteria were considered in including each study.  To ensure that the data reflects all seasons, 102 
recharge estimates for time periods less than one year were excluded. The sites with significant 103 
contribution to groundwater from streams or by any artificial means were also eliminated as 104 
the scope of this research was to model naturally occurring recharge. In order to maximize the 105 
realistic nature of the dataset, all studies using some kind of recharge modelling were removed 106 
from the dataset. After all exclusions, 715 data points spread across the globe (Figure 1) 107 
remained and were used for further analysis. Of these studies, 345 were estimated using the 108 
tracer method, 123 using the water balance method, and the remaining studies used baseflow 109 
method, lysimeter, or water table fluctuation method. This diversity in recharge estimation has 110 
enabled us to evaluate systematic differences in various measurement techniques. The year of 111 
measurement or estimation of recharge estimates in the final dataset differed (provided as 112 
supplementary material), and ranged from 1981 to 2014 (Figure 2).  This inconsistency in the 113 
data raised a challenge when choosing the timeframe for factors in the modelling exercise, 114 
particularly those showing inter annual variation. 115 
 116 

 117 
Figure. 1. Locations of the 715 selected recharge estimation sites used for model building. 118 
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 119 
Figure 2. Histogram showing frequency and spread of year of study of recharge estimates in 120 

the final dataset. 121 

 122 
The next step was to identify potential explanatory factors that could influence recharge 123 
(referred to as predictors from here on). Potential predictors that were reported in the literature 124 
as having some influence on recharge were identified (Athavale et al., 1980;Bredenkamp, 125 
1988;Edmunds et al., 1991;Kurylyk et al., 2014;Nulsen and Baxter, 1987;O'Connell et al., 126 
1995;Pangle et al., 2014). The choice of predictors was made based on the availability of global 127 
gridded datasets and relative importance in a physical sense. Finally, we employed 12 128 
predictors comprising meteorological factors, soil/vadose zone factors, vegetation factors and 129 
topographic factors. Details of predictors are given in Table 1.  130 
 131 
Data for the chosen predictors corresponding to 715 recharge study sites were extracted from 132 
global datasets. Meteorological datasets (P, T and PET) were obtained from the Climatic 133 
Research Unit, University of East Anglia, England. Even though daily data was available from 134 
1901 to 2014 at a resolution of 0.50 x 0.50, in this study mean annual average of the latest 34 135 
years (1981 to 2014) was used to reduce the inconsistency in year of recharge measurements 136 
in the final dataset. Topographic and soil data were acquired from the NASA Earth observation 137 
dataset. Both datasets were of 0.50 x 0.50 spatial resolution. A few of the predictors, including 138 
number of rainfall days (Rd) and land use/land cover (LU) data were obtained from AquaMaps 139 
(by FAO) and USGS (United States Geological Survey) at a spatial resolution of 0.50 x 0.50 140 
and 15 arc minutes respectively. Thus obtained LU data was compared with land cover reported 141 
in literature and corrected for any discrepancies. The spatial resolution of the different data 142 
used was diverse. This was dealt with, by extracting the values for each recharge site from the 143 
original grids using the nearest neighbour interpolation method. As a result, predictor data 144 
extracted for each recharge site will differ from the actual value due to scaling and interpolation 145 
errors. Out of the 12 predictors LU was not a quantitative predictor and was transformed into 146 
a categorical variable in the modelling exercise.  147 

Table 1. Description of predictors used for recharge model building 148 
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Precipitation P mm/yr 0.50 x 
0.50 

1981 - 
2014 

Climatic 
Research 

Unit, 
University 

of East 
Anglia, 
England 

Mean annual (Harris et 
al., 2014) 

Mean 
temperature T 0C 0.50 x 

0.50 
1981 - 
2014 

Climatic 
Research 

Unit, 
University 

of East 
Anglia, 
England 

Mean annual 
temperature 

(Harris et 
al., 2014) 

Potential 
evapo-

transpiration 
PET mm/yr 0.50 x 

0.50 
1981 - 
2014 

Climatic 
Research 

Unit, 
University 

of East 
Anglia, 
England 

Penman-
Monteith 
Reference 

Crop 
Evapotranspi

ration 

(Harris et 
al., 2014) 

No. of rainy 
days Rd  5 arc 

minute 
1981 - 
2014 

AQUAM
APS, FAO 

Average 
number of 

wet days per 
year defined 
as having ≥ 
0.1 mm of 

precipitation 

(New et al., 
2002) 

Slope S fraction 0.50 x 
0.50 - Earth data, 

NASA 
Mean Surface 

slope 
(Verdin, 

2011) 

Saturated 
hydraulic 

conductivity 
ksat cm/d 10 x 10 - Earth data, 

NASA 

Saturated 
hydraulic 

conductivity 
at 0 - 150 cm 

depth 

(Webb et 
al., 2000) 

Soil Water 
Storage 

Capacity 

SWS
C mm 10 x 10 - Earth data, 

NASA 

Texture 
derived soil 

water storage 
capacity in 
soil profile 
(upto 15 m 

depth) 

(Webb et 
al., 2000) 

Excess water 
(without 

irrigation) 
EW mm - 1981 - 

2014 - 
∑ (𝑃𝑃𝑖𝑖 −12
𝑖𝑖=1

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) where 
Pi > PETi 

 

Aridity index AI - - 1981 - 
2014 - AI = P/PET  

Clay Content Clay % 10 x 10 - Earth data, 
NASA 

0-150cm 
profile 

(DAAC, 
2016) 
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Bulk Density ρb gm/cm3 10 x 10 - Earth data, 
NASA 

0-150cm 
profile 

(DAAC, 
2016) 

Land use 
land cover LU - 15 arc 

second - USGS/Lit
erature 

Forest, 
Pasture, 

Cropland, 
Urban/build 
up, Barren 

(Kim and 
Jackson, 

2012;Broxt
on et al., 

2014) 

2.2 Recharge model development 149 

With empirical studies, the science world is always sceptical about whether to use a single best-150 
fit model or to infer results from several better predicting and plausible models. The former 151 
option is feasible only if there exists a model which clearly surpasses other models, which is 152 
rare in the case of complex systems like groundwater. Usually cross correlation and multiple 153 
controlling influences on the system lead to more than one model having a similarly good fit 154 
to the observations. Thus choosing explanatory variables and model structure is a significant 155 
challenge. In the past this challenge was often addressed using various step-wise model 156 
construction methods, with the final model being selected based on some model fit criteria that 157 
penalises model complexity or results in high numbers of explanatory variables (Fenicia et al., 158 
2008;Gaganis and Smith, 2001;Jothityangkoon et al., 2001;Sivapalan et al., 2003). These 159 
approaches were pragmatic responses to the large computational load involved in trying all 160 
possible models but they have a disadvantage in that the final model will be dependent on the 161 
step-wise selection process used (Sivapalan et al., 2003). An alternative approach for 162 
addressing this high level of uncertainty in model structure is to adopt a multi-model inference 163 
approach that compares many models (Duan et al., 2007;Poeter and Anderson, 2005). It 164 
typically results in multiple final models and an assessment of the importance of each 165 
explanatory variable. Therefore, this approach was used to develop an understanding of the 166 
role of different controlling factors on recharge in a data limited condition.  167 
 168 
Choosing predictors that are capable of representing the system and selecting the right models 169 
for prediction are the key steps in the multi-model inference approach. Here, models were 170 
chosen by ranking the fitted models based on performance, and comparing this to the best 171 
performing model in the set (Anderson and Burnham, 2004).  This model ranking also provided 172 
a basis for selecting individual predictors.  The analysis progressed through three key stages: 173 
exploratory analysis; model building and model testing.   174 

2.2.1 Multi-model analysis 175 

A multi-model selection process aims to explore a wide range of model structures and to assess 176 
the predictive power of different models in comparison with others. Essentially, models with 177 
all possible combinations of selected predictors are developed and assessed via traditional 178 
model performance metrics (discussed later). By conducting such an exhaustive search, multi-179 
model analysis avoids the problems associated with selection methods in step-wise regression 180 
approaches (Burnham and Anderson, 2003). Importantly, it reduces the chance of missing 181 
combinations of predictors with good predictive performance. However, a disadvantage of this 182 
approach is that the number of predictor combinations grows rapidly with the number of factors 183 
considered. To make the analysis computationally efficient, we set an upper limit for the 184 
number of predictors used. Another problem with this approach is that it can result in over 185 
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fitting. To address this issue we evaluated model performance with metrics that penalise 186 
complexity and tested the model robustness with a cross-validation analysis.  The model 187 
development procedure using multi-model analysis is described in detail below.  188 

(a) Exploratory Analysis 189 

Firstly, all the chosen predictors were individually regressed against the compiled recharge 190 
dataset. This was carried out with the main objective to find the predictors having significant 191 
control on recharge and to gain an initial appreciation of how influential each predictor is 192 
compared to others. This understanding will aid in eliminating the least influencial predictors 193 
from further analysis. Then assumptions involved in regression analysis, such as linearity, low 194 
multicollinearity (important for later multivariate fitting), and independent identically 195 
distributed residuals were analysed using residual analysis. Following the residual analysis, 196 
various data transformations (square root, logarithmic and reciprocal) were carried out to 197 
reduce heteroscedasticity and improve linearity of the variables. The square root transformed 198 
recharge along with non-transformed predictors gave the most homoscedastic relations (results 199 
not shown). Therefore, these transformed values were used in further model building exercises. 200 
Predictors were selected and eliminated based on statistical indicators such as adjusted 201 
coefficient of determination (R2

adj) value and Root mean square error (RMSE).  202 

(b) Model building 203 

Multiple linear regression was employed for building the models as the transformed dataset did 204 
not exhibit any nonlinearity. Furthermore, the presence of both negative and positive values in 205 
the dataset restricted the applicability of other forms of regression like log-linear and 206 
exponential (Saft et al., 2016). Linear regression is known for its simple and robust nature in 207 
comparison to higher order analysis. The robustness of linear regression helped to maintain 208 
parsimony together with reasonable prediction accuracy. A rigorous model building approach 209 
was adopted in order to capture the interplay between predictors with combined/interactive 210 
effects on groundwater recharge. This is an exhaustive search in which all candidate models 211 
are fitted and intercompared using performance criteria. In a way, this modelling exercise used 212 
a top-down approach, starting with a simple model which is expanded as shortcomings are 213 
identified (Fenicia et al., 2008).   214 

(c) Model testing 215 

The analysis above provided insight into the relative performance of the models. However, it 216 
is also important to assess the dependence of the results on the particular sample, so we 217 
conducted a subsample analysis in which the same method was re-applied to subsamples of the 218 
data. Finally, predictive uncertainty was estimated through leave-one-out cross validation. In 219 
the first case, the whole model development process was redone multiple times using 220 
subsamples of the data. To achieve this, the entire dataset was randomly divided into 80% and 221 
20% subsets and 80% of the data were used for building the model. The predictive performance 222 
developed model was tested against the omitted 20% of data. This was repeated 200 times, in 223 
order to eliminate random sampling error. The leave-one-out cross validation was applied to 224 
the best few individual model structures and provided an estimate of predictive performance 225 
for those particular models. It also gave an indication of data quality at each point. 226 
 227 
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In summary the key steps in the multi-model analysis were: 228 
1. Selecting predictors 229 
2. Fitting all possible models consisting of combinations of predictors 230 
3. Determining the optimum number of predictors for each model, Vopt 231 
4. Calculating model performance metrics for each model up to Vopt, 232 
5. Calculating the “weight of evidence” for each predictor based on the performance 233 

metric of all models containing that predictor 234 
6. Testing the predictive performance of the models. 235 

2.2.2 Ranking models and predictors 236 

Model performance was evaluated using several information criteria.  These information 237 
criteria include a goodness of fit term and an overfitting penalty based on the number of 238 
predictors in the particular model.  In this study we used R2

adj, the Consistent Akaike 239 
Information Criterion (AICc), and the Complete Akaike Information Criterion (CAIC) as the 240 
performance evaluation criteria. These criteria differ in terms of penalising overfitting. R2

adj 241 
penalises over-fitting the least, AICc moderately, and CAIC heavily. However, when we are 242 
unsure of the true model and whether it over fits or not, there is some advantage in employing 243 
several criteria as it gives insight into how the results depend on the criteria used.  Suitability 244 
of the information criteria also varies with the sample size. CAIC acts as an unbiased estimator 245 
for large sample size with relatively small candidate models, but produces large negative bias 246 
in other cases, whereas AICc is well suited for small-sample applications (Cavanaugh and 247 
Shumway, 1997;Hurvich and Tsai, 1989). The formulas for the above criteria are as follows: 248 
 249 
𝐴𝐴𝐴𝐴𝐴𝐴 =  −2 × 𝑙𝑙𝑙𝑙𝑙𝑙 + 2 × 𝑘𝑘  (Akaike, 1974) [1] 250 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴 + (2 × (𝑘𝑘 − 1) × 𝑘𝑘+2
𝑛𝑛−𝑘𝑘−2

)  (Hurvich and Tsai, 1989) [2] 251 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  −2 × 𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑘𝑘 × (𝑙𝑙𝑙𝑙(𝑙𝑙) + 1) (Bozdogan, 1987) [3] 252 

𝑅𝑅2 = 1 − � 𝑛𝑛−1
𝑛𝑛−𝑘𝑘−1

� × [1− 𝑅𝑅2] (Ezekiel, 1929;Wang and Thompson, 2007) [4] 253 

where 𝑙𝑙𝑙𝑙𝑙𝑙 is the log-likelihood function, k is the dimension of the model, and n is the number 254 
of observations. 255 
 256 
When assessing candidate models there are two aspects which are of particular interest: (1) 257 
which models are better? and (2) how much evidence exists for each of the predictors in 258 
predicting recharge?  Analysis of the AICc and CAIC was used to answer both these questions. 259 
Models were ranked using information criteria, with smaller values indicating better 260 
performance. Information criteria are more meaningful when they are used to evaluate the 261 
relative performance of the models (Poeter and Anderson, 2005). Models were ranked from 262 
best to worst by calculating model delta values (∆) and model weights (W) as follows: 263 
 264 
∆𝑖𝑖= 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛 [5] 265 

𝑊𝑊𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(−0.5 × ∆𝑖𝑖)/𝛴𝛴 𝑒𝑒𝑒𝑒𝑒𝑒(−0.5 × ∆𝑚𝑚) [6] 266 

 267 
where, AICmin is the information criteria value of the best model. ∆𝑖𝑖  and 𝑊𝑊𝑖𝑖  represent the 268 
performance of ith model in comparison with the best performing model in the set of M models. 269 
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Given that these are relative measures, they are independent of the size of the sample or number 270 
of candidate models.  271 
 272 
Evidence ratios were then calculated as the ratio of the ith model weight to the best model 273 
weight. The evidence ratio can be used as a measure of the evidence for the ith model compared 274 
to the other models. The evidence ratios also provide means to estimate the importance of each 275 
predictor. This involves transformation of evidence ratios into a Proportion of evidence (PoE) 276 
for each predictor. PoE for a predictor is defined as the sum of weights of all the models 277 
containing that particular predictor. PoE ranges from 0 to 1. The closer the PoE of a predictor 278 
is to 1, the more influential that predictor is.    279 

2.3 Global groundwater recharge estimation 280 

The best model from the above analysis was used to build a global recharge map at a spatial 281 
resolution of 0.50 x 0.50. Recharge estimation was done annually for a study period of 34 years 282 
(1981–2014), and the estimated groundwater recharge was averaged over the period to produce 283 
a global map. In addition to this, maps showing percentage of rainfall becoming recharge, and 284 
variation of recharge over the years were also generated. As recharge data from regions with 285 
frozen soil were scarce in the model building dataset, the model predictions in those regions 286 
particularly for regions with Koopan classification Dfc, Dfd, ET and EF are not highly reliable, 287 
so the EF regions of Greenland and Antarctica were excluded due to lack of data.  However, 288 
the modelled recharge for Dfc, Dfd and ET regions were included in the final map. In addition, 289 
the modelled recharge values were compared against country level statistics from FAO (2005) 290 
for 153 countries. 291 

3 Results 292 

The results address three important questions. 1. Which are the most influential predictors of 293 
groundwater recharge? 2. What are the better models for predicting recharge? 3. How does 294 
groundwater recharge vary over space and time? The first question was answered by carrying 295 
out an exploratory data analysis and also by estimating the PoE for each predictor, the second 296 
using information criteria and the third by mapping recharge at 0.50 x 0.50 using the best model.  297 

3.1 Exploratory data analysis 298 

Table 2 gives the statistical summary of predictors and groundwater recharge at 715 data sites. 299 
It is apparent from the table that predictors varied considerably between sites, consistent with 300 
inter-site variability in regional physical characteristics. This variability provided an 301 
opportunity to explore recharge mechanisms in a range of different physical environments. As 302 
we used linear regression to study the one to one relationship of recharge with each of the 303 
predictors, RMSE and bias of fitting were used to identify the predictors with the most 304 
explanatory power. In this case, RMSE values ranged between 23.2 mm/yr for P and 30.21 305 
mm/yr for S. Predictive potential of meteorological predictors was greater than for other classes 306 
of predictor. (Figure 3). P, AI, EW and ρb

 had a negative bias whereas, all other predictors had 307 
a positive bias. 308 

Table 2. Summary statistics of potential predictors from the dataset used in this study. 309 

Parameters Minimum Maximum Range Mean Standard deviation 
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P (mm/yr) 1.30 2627.00 2625.70 572.82 305.65 
T (0C) 1.60 30.62 29.02 17.73 6.04 

PET (mm/yr) 6.60 2600.00 2593.40 1356.17 401.77 
Rd (d/y) 2.00 270.00 268.00 85.89 42.78 

S 0.00 10.16 10.15 0.84 1.17 
ksat (cm/d) 0.00 265.75 265.75 60.61 59.50 

SWSC (mm) 2.00 1121.00 1119.00 517.38 240.81 
AI 0.00 68.18 68.18 0.70 3.74 

EW (mm/yr) 0.01 1467.87 1467.86 125.41 188.07 
ρb (gm/cm3) 0.15 1.67 1.51 1.44 0.20 

Clay (%) 1.87 52.51 50.64 23.77 7.66 
LU 1.00 5.00 4.00 2.58 0.81 

Recharge (mm/yr) 0.00 1375.00 1375.00 73.22 125.94 
 310 

  311 
Figure 3. Model fit performance criteria for single predictor regressions. 312 

3.2 Multi-model analysis 313 

3.2.1 Proportion of evidence (PoE) for individual predictors 314 

Figure 4 shows the PoE of the 12 predictors used in this study. According to this analysis, 3 of 315 
the 12 predictors stood out as having the greatest explanatory power (Figure 4). Precipitation 316 
(P), Potential evapotranspiration (PET) and Land use land cover (LU) had the highest 317 
proportions of evidence (~1). Subsurface percentage of clay (Clay) and Saturated hydraulic 318 
conductivity (ksat) also had an important influence on recharge with PoE ~0.4. Aridity index 319 
(AI), Rainfall days (Rd), Mean temperature (T), Bulk density (ρd), Slope (S ), Excess water 320 
(EW) and Soil water storage capacity at root zone (SWSC) were in the lower PoE range (<0.1 321 
according to both the criteria).  There was some variation in the PoE value of the predictors 322 
with performance metric, due to the diversity in over-fitting penalty. However, ranking of the 323 
variables was identical irrespective of the performance metric used. The ‘best’ and ‘worst’ 324 
predictors ranked according to R2

adj were also in agreement with the PoE analysis (not shown). 325 
In addition, results of the subsample analysis gave similar results (not shown). 326 
 327 
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 328 
 329 

Figure 4. Proportion of evidence according to AICc and CAIC for 12 predictors (sorted in 330 
descending order of PoE). 331 

3.2.2 Better performing models  332 

According to information criteria, the performance of models can only be evaluated relative to 333 
the best performing model in the set. In this study, as per the model weights, no model exhibited 334 
apparent dominance. The evidence ratio (ratio between the weights of the best model and nth 335 
model) suggested that the best model according to CAIC was only 1.04 times better than the 336 
2nd best model. However, the evidence ratio increased exponentially with increase in model 337 
rank and there was a clear distinction between better models and worse models. Similar results 338 
were reported by Saft et al. (2016) in her work for modelling rainfall-runoff relationship shift. 339 
The choice of better models was made by considering the PoE of individual predictors (refer 340 
section 3.2.1) and the optimal number of predictors in the model (Vopt). Vopt was chosen by 341 
comparing the performance of the top 10 models out of all possible models that could be 342 
developed with different maximum number of predictors (Vmax). Figure 5 shows the 343 
performance criteria for the top three models for different Vmax values. The model performance 344 
increased with Vmax up to 4 or 5, depending on the different criteria. After that, AICc, CAIC 345 
and R2

adj values remained constant, indicating that further addition of predictors did not 346 
improve the model performance. Table 3 illustrates the predictors in the top 10 models 347 
according to performance criteria. P, PET and LU repeatedly appeared in the predictor list of 348 
the top ten models substantiating their high predictive capacity. In this particular case, top 349 
performing models according to both information criteria were the same, therefore results from 350 
only one criteria (CAIC) will be discussed. 351 
 352 
Table 3. Predictors used in the top 10 models, ranked based on CAIC criteria (* indicates the 353 

predictor was included). 354 

Model 
ranking P T PET Rd S ksat SWSC AI EW ρb Clay LU 

1 *   *     *           * 
2 *   *               * * 
3 *   *                 * 
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4 *   *         *       * 
5 *   *             *   * 
6 *   *           *     * 
7 * * *                 * 
8 *   *       *         * 
9 *   * *               * 
10 *   *   *             * 

 355 
 356 

  357 
 358 

Figure 5. AICc, CAIC, and R2
adj for the top 3 models with varying complexity (number of 359 

predictors, Vmax). 360 

3.2.3 Model testing 361 

Models ranking from 1 to 10 according to CAIC (Table 3) were tested using both the model 362 
testing techniques discussed in section 2.2.1(c). Figure 6 depicts model fit and model prediction 363 
RMSE values of 200 subsample tests. It is clear from the boxplots that the difference between 364 
the RMSE of the 1st and the 10th model during both model fitting and prediction is less than 1 365 
mm/yr. In subsample tests, R2

adj of the best model ranged from 0.42 to 0.56 implying 42 to 56% 366 
of the variance was explained. The model errors at each data point ranged from -8 to 28 mm/yr. 367 
However, 97.2% of the points had errors between -8 and 10 mm/yr. Figure 7 shows the relation 368 
between precipitation and model errors and it is evident from this scatter plot that model 369 
predictions were not greatly influenced by low or high precipitation. In other words, the model 370 
was unbiased by precipitation trends. Similar checking was done for all other predictors (not 371 
shown) which all showed a similar pattern to precipitation. The dataset was classified based on 372 
recharge estimation techniques and model performance was tested with results showing no 373 
systematic difference (not shown). 374 
 375 
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 376 
Figure 6. RMSE of sub-sample (a) model fitting and (b) model prediction of top 10 models 377 

according to CAIC. 378 

 379 

 380 
Figure 7 (a) Error at each data point along with the corresponding rainfall obtained using the 381 
leave-one-out model testing procedure and (b) Scatter plot between error at each data point 382 

and corresponding precipitation. 383 

3.3 Global Groundwater Recharge 384 

The global long term (1981 – 2014) mean annual groundwater recharge map at a spatial 385 
resolution of 0.50 was made by the model developed in section 3.2 (Figure 8). Grid scale 386 
recharge ranged from 0.02 mm/yr to 996.55 mm/yr with an average of 133.76 mm/yr. The 387 
highest recharge was associated with very high rainfall (>4000 mm/yr). Humid regions such 388 
as Indonesia, Philippines, Malaysia, Papua New Guinea, Amazon, Western Africa, Chile, 389 
Japan and Norway had very high recharge (>450 mm/yr). Whereas, arid regions of Australia, 390 
the Middle East and Sahara had very low recharge (<0.1 mm/yr). In humid areas, percentage 391 
of rainfall becoming groundwater recharge (>40%) was found to be very high in comparison 392 
to other parts of the world. However, the mean percentage of rainfall becoming recharge is 393 
only 22.06% across the globe. Among all the continents, Australia had the lowest annual 394 
groundwater recharge rate. 395 
 396 
Over the 34 years, global annual mean recharge followed the same pattern as that of global 397 
annual mean precipitation (Figure 9). Least recharge was predicted in the year 1987 398 
(groundwater recharge=95 mm/yr), where the annual average rainfall was <180 mm/yr. 399 
Variation in recharge over the years was maximal in arid regions of Australia and North Africa 400 
(Figure 10(a)). However, the standard deviation of recharge was higher in humid areas than in 401 

(a) (b) 

(a) (b) 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-679
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 20 December 2017
c© Author(s) 2017. CC BY 4.0 License.



14 
 

arid regions (Figure 10(b)). This indicates that standard deviation did not clearly represent year 402 
to year variations in recharge. Potentially, the advantage of using coefficient of variation over 403 
standard deviation is that it can capture variations even when mean values are very small. In 404 
this case precipitation and potential evapotranspiration were the two major predictors of 405 
recharge. Globally, variability in evapotranspiration is much less than variability in rainfall 406 
(Peel et al., 2001; Trenberth and Guillemot, 1995). Therefore, variability of groundwater 407 
recharge both temporally and spatially is due to variability in precipitation, which implies that 408 
arid regions are more susceptible to inter-annual variation in groundwater recharge. A 409 
comparison of predicted recharge against country level recharge estimates from FAO (2005) 410 
shows that the model tends to over predict recharge, particularly for low recharge areas. 411 
However, due to inaccuracies in the FAO estimates this cannot be considered as a reliable 412 
comparison (Figure 11).  413 

  414 
Figure 8. Long-term (1981 -2014) average annual groundwater recharge estimated using the 415 

developed model. 416 
 417 

 418 
Figure 9. Temporal distribution of total global recharge along with total global precipitation 419 

of corresponding years for a period of 1981 to 2014. 420 
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  421 

   422 
Figure 10. Map showing (a) coefficient of variability and (b) standard deviation of annual 423 

groundwater recharge from 1981 to 2014. 424 

 425 
Figure 11. Comparison of predicted recharge against country level estimates from FAO. 426 

4 Discussion 427 

The aims of this study were to identify the factors having the most influence on groundwater 428 
recharge, and to develop a global model for predicting groundwater recharge under limited data 429 
conditions, without extensive water balancing. In this study, an empirical model building 430 
exercise employing linear regression analysis, multimodel inference techniques and 431 
information criteria was used to identify the most influential predictors of groundwater 432 
recharge and use them to build predictive models.  Finally, a global groundwater recharge map 433 
was created using the developed model. The key findings from this study and their implications 434 
for future research and practice with respect to global groundwater recharge are discussed 435 
below. 436 
 437 
One of the findings to emerge is that, out of numerous models developed in this study there 438 
was no single best model for groundwater recharge.  Instead, there were clear sets of better and 439 
worse models. However, there were predictors which stood out as having greater explanatory 440 
power.  Of the 12 predictors chosen for the analysis, meteorological (P, PET) and vegetation 441 
predictors (LU) had the most explanatory information followed by saturated hydraulic 442 
conductivity and clay content. Thus models using these predictors ranked higher according to 443 
information criteria. It is reasonable that meteorological factors had the most explanatory 444 
information. In most cases, especially dry regions, groundwater recharge is controlled by the 445 

(a) (b) 
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availability of water at the surface, which is mainly controlled by precipitation, 446 
evapotranspiration and geomorphic features (Scanlon et al., 2002). Numerous studies agree 447 
with this finding. For example, in south western USA, 80% of recharge variation is explained 448 
by mean annual precipitation (Keese et al., 2005). However, the influence of meteorological 449 
factors on groundwater recharge is highly site-specific (Döll and Flörke, 2005). The effect of 450 
meteorological factors  can also depend on whether the season or year is wet or dry, type of 451 
aquifer and irrigation intensity (Adegoke et al., 2003;Moore and Rojstaczer, 2002;Niu et al., 452 
2007). 453 
 454 
Many studies have reported vegetation related parameters as the second influential predictor of 455 
groundwater recharge. Vegetation has a high correlation with other physical variables such as 456 
soil moisture, runoff capacity and porosity, which adds to its recharge explanatory power (Kim 457 
and Jackson, 2012;Scanlon et al., 2005).  In this study recharge rate was high, where runoff 458 
water have more retention time on the surface. This was mainly observed for shallow rooted 459 
vegetation like grasslands. In deep rooted forest areas recharge was reduced because of 460 
increased evapotranspiration (Kim and Jackson, 2012). However, not all reported studies are 461 
in agreement with vegetation as an important predictor of recharge. For example, Tögl (2010)  462 
failed to find a correlation between vegetation/land cover  and recharge. This may be the result 463 
of some peculiarity in the study dataset.  Apart from the predictors discussed above, depth to 464 
groundwater and surface drainage density were also identified as potential predictors of 465 
recharge from literature (Döll and Flörke, 2005;Jankiewicz et al., 2005). Despite this they were 466 
excluded from this study because of the lack of appropriate resolution global datasets.  467 
 468 
The total recharge estimated in this study is strongly consistent with results from complex 469 
global hydrological models.  Long term average annual recharge was found to be 134 mm/yr. 470 
The total recharge estimated in this study (13,600 km3/yr) was very close to existing estimates 471 
of complex hydrological models except those using MATSIRO, which overestimates recharge 472 
in humid regions (Koirala et al., 2012). The results shown in Table 4 indicate that, compared 473 
to existing techniques, the model developed in this study can make recharge assessments with 474 
the same reliability but with fewer computational requirements. Moreover, the error in recharge 475 
prediction in this study was low, ranging from only -8 mm/yr to 10 mm/yr for 97.2% of cases.  476 
 477 

Table 4. Global estimates of groundwater recharge  478 

Model Used Spatial 
Resolution 

Temporal 
Range 

Total Global 
Recharge ( km3/yr) Reference 

Empirical model 0.5deg 1981-2014 13,600 Current study 
WaterGAP 2 0.5deg 1961-1990 14,000 (Döll, 2002) 
WaterGAP 0.5deg 1961-1990 12,666 (Döll and Flörke, 2005) 

PCR GlobWB 0.5deg 1958-2001 15,200 (Wada et al., 2010) 
PCR GlobWB 0.5deg 1960-2010 17,000 (Wada et al., 2012) 

MATSIRO 1deg 1985-1999 29,900 (Koirala et al., 2012) 
FAO Statistics Country 1982-2014 10,613 (FAO, 2016) 

 479 
The global recharge map developed showed a similar pattern to recharge maps produced using 480 
complex global hydrological models. The results of this study indicate that recharge across the 481 
globe was varied considerably as a function of spatial region, and was analogous to global 482 
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distribution of climate zones (Scanlon et al., 2002).  Humid regions had very high recharge 483 
compared to arid (semi-arid) regions, which is obviously due to the higher availability of water 484 
for recharge. Recharge was also affected by climate variability and climate extremes at a 485 
regional level (Scanlon et al., 2006;Wada et al., 2012). However, an effect of climate variability 486 
on inter annual recharge at a global-scale was not pronounced in our results. The potential 487 
reason for this is that the El Nino Southern Oscillation (ENSO), the primary factor that 488 
determines climate variability globally, has converse effects in different parts of the world. The 489 
effects of increased precipitation in some parts of the world would have been counteracted by 490 
reductions in precipitation in other areas resulting in relatively small effect on inter annual 491 
variation in global recharge.  492 

5 Conclusion 493 

This study presents a new method for identifying the major factors influencing groundwater 494 
recharge and using them to model large scale groundwater recharge. The model was developed 495 
using a dataset compiled from the literature and containing groundwater recharge data from 496 
715 sites. In contrast to conventional water balance recharge estimation, a multimodel analysis 497 
technique was used to build the model. The model developed in this study is purely empirical 498 
and has fewer computational requirements than existing large scale recharge modelling 499 
methods. The 0.50 global recharge estimates presented here are unique and more reliable 500 
because of the extensive validation done at different scales. Moreover, inclusion of a range of 501 
meteorological, topographical, lithological and vegetation factors adds to the predictive power 502 
of the model. The results of this investigation show that meteorological and vegetation factors 503 
had the most predictive power for recharge. The high dependency of recharge on 504 
meteorological predictors make it more vulnerable to climate change. Apart from being a 505 
computationally efficient modelling method, the approach used in this study has some 506 
limitations. Firstly it does not include direct anthropogenic effects on the groundwater system 507 
and also excludes focused recharge by natural or artificial means, suggesting scope for further 508 
future development. Secondly, the recharge data set used in this study did not include data 509 
points from frozen regions. Therefore, Greenland and Antarctica were excluded from the final 510 
recharge map.  However, the model developed in this study and the recharge maps produced 511 
will aid policy makers in predicting future scenarios with respect to global groundwater 512 
availability.  513 
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